Volume 29

Number **24**

November 28, 1990

Inorganic Chemistry

0 Copyright I990 by the American Chemical Society

Communications

Heteronuclear NMH Studies of Cobalamins. 11. I5N NMR Studies of the Axial Nucleotide and Amide Side Chains of Cyanocobalamin and Dicyanocobamides'

In previous studies 2.3 spectroscopic and thermodynamic evidence has been found for the occurrence of the so-called "tuck-in" species of base-off, but benzimidazole deprotonated cobalamins in which the free-base benzimidazole ligand is associated with a corrin ring side chain, probably via a hydrogcn-bonded intcraction with an amide N-H. On the basis of tentative ${}^{13}C$ NMR assignments, a comparison of the ¹³C NMR spectra of dicyanocobalamin $((CN),-Ch)$, which contains a pendent, deprotonated benzimidazole nucleotide, and dicyanocobinamide $((CN),Cbi)$, from which the nucleotide has been removed, allowed a tentative assignment of the hydrogen-bond donor in the tuck-in species as the *c* side chain amide. We now present further observations and characterization of the tuck-in species of $(CN)_2C$ bl by ¹⁵N NMR spcctroscopy. These results represent the first observation of the ¹⁵N NMR spectrum of the benzimidazole nucleotide of cobalamins. We also now report the first NMR observation of the amide protons of cobalamins and their connectivity to the amide nit rogcnz.

Figure 1 shows the ¹⁵N NMR spectrum of (CN)Cbl (Figure **IA)** and (CN)₂Cbl (Figure IB) 50% enriched in ¹⁵N in the benzimidazole nucleotide. Chemical shifts, line widths, and **l5h-Itl** coupling constants arc collcctcd in Table I. along with data for the protonated, base-off species of $(CN)Cb$, the protonated, detached nucleoside (α -ribazole cation⁷), and the freebase, detached nucleotide (α -ribazole 3'-phosphate dianion⁸). Assignments of the ¹⁵N resonances of the free base and protonated, detached nucleoside (or nucleotide) are based on analogies to the assignments for *N*-methylimidazole¹⁰ and *N*-methylbenzimidazolc¹¹ and the effects of protonation on the ^{15}N resonances of N -methylimidazole¹⁰ and pyridine.¹² Assignment of the ¹⁵N resonances of the base-off species of $(CN)CbI$ follows directly, and the assignment of the downfield resonance of base-on $(CN)\overline{Cbl}$ to the 93 nitrogcn (i.c.. the coordinated nitrogen) is confirmed b) the influcncc of the metal atom's quadrupolar relaxation on the line width of this resonance.

- (I) Part IO: Brown. **K.** L.: Gupta. 8. **D.** *Inorg. Chem.* **1990.** 29,3854-3860.
- *(2)* Brown. **K.** L. *J. Ani. Chem. So?.* **1987.** 109. 2277-2284.
- (3) Brown. **K.** l..: Peck-Siler. **S.** *Inorg. Chem.* **1988.** *27.* 3548-3555.
-
- (4) *Biochemistry*, 1974, 73, 1555–1560.
(5) Srinivasan, P. R.; Lichter, R. L. *J. Magn. Reson.* 1977, 28, 227–234.
(6) Brown, K. L.; Hakimi, J. M. *Inorg. Chem.* 1984, 23, 1756–1764.
(7) Brown, K. L.; Hakimi, J. M.; Nuss,
-
-
- **D.** W. *Inorp Chenr.* **1984.** *23.* 1463-1471. *(8)* Brovn. **K.** I..: Hakiini. **J. M.** *J.* **.4nr.** *Cheni. Sur.* **1986.** *108,* 496-503.
- (Y) L;iniiii. I..: t{cckmiinn. *C.:* Rcn7, P. *Eur. J. Biochenr.* **1982.** *I22.* 569-57 I.
- (10) Schuster, I. I.; Roberts, J. D. J. Org. Chem. 1979, 44, 3864-3867.
(11) Stefaniak, L.: Roberts, J. D.: Witanowski, M. W.; Webb, G. A. Org.
Magn. Reson. 1984, 22, 215-220.
-
- (12) Duthaler. R. O.: Roberts. J. D. *J. Am. Chem. Soc.* **1978.** 100,

4969–4973.

Figure 1. (A) ¹⁵N NMR spectrum of $[B1,B3-{}^{15}N_2]$ (CN)Cbl. 10 mM in water, locked to D₂O in a concentric insert (Wilmad). A total of 3244 transients were collected into a 32K data **set** over a **sweep** width of 10000 Hz by using an inverse-gated decoupling sequence on a Bruker MSL 300 NMR spectrometer (30.415 MHz). The recycle time was 45 **s.** Chemical shifts are downfield relative to external $NH₃(l)$. (B) ¹⁵N NMR spectrum of $[B1,B3⁻¹⁵N₂](CN)₂Cbl$, 10 mM in 0.3 M aqueous KCN, locked to **D,O** in a concentric insert (Wilmad). **A** total of 3408 transients \%ere collcctcd into **;I** 32K data set as in **(A).** The recycle time was **20 s.** Thc small **peak** iit 275.4 ppm is the nitrogen of free cyanide (at natural abundance).

Coordination of the B3 nitrogcn of thc nucleotide to the cobalt atom causes a 40.5 ppm upfield shift of the ¹⁵N resonance (relative to that of the dctachcd, free-basc nuclcotidc), or **59%'** of the effect ⁰¹' 93 protonation (a 68.2 ppm upfield shift), while a similar comparison of B1 shows 43% of the effect of B3 protonation.¹³

Table I. ¹⁵N NMR Data for the Nucleotides of Cyanocobamides and Free a-Ribazole Species[®]

		B١		B36			
species	δ . ppm	J.ª Hz	$\Delta\nu_{1/2}$ H2	δ . ppm	$J^{\,a}$ Hz	$\Delta p_{1/2}$ Ηz	
CNCbl. base-on	$164.22 \quad 6.1$		1.7	187.71	6.97	3.3	
CNCbl, ^h base-off	172.31	-5.5		159.43	5.2		
(CN) ₂ Cb ¹	161.25 6.7		2.1	232.31	10.4	2,4	
α -ribazole/ cation	171.70			158.98			
α -ribazole 3'-P ^k dianion	158.51			227.16			

"Spectra measured at 25 °C in water, locked to D₂O (concentric insert), by inverse gated or undecoupled sequence at 30.415 MHz on a Bruker MSL 300 spectrometer or at 50.693 MHz on a Bruker AM 500 spectrometer. b From standard Cbl numbering,⁴ B1 is benzimidazole nucleotide N₁ (the glycoside N) and B3 is benzimidazole nucleotide N_3 (the liganding nitrogen). 'Chemical shifts were determined relative to external CH₃NO₂ and generated relative to NH₃(1) (δ_{CHNOS} = 380.23).⁵ Two-bond H-C-N
coupling constant to benzimidazole B2 hydrogen. • Width at half-height, by Gaussian line fits with 0.6 Hz line broadening. *Sample was* 10 mM in $[B1, B3^{-15}N_2](CN)Cbl$, 50 atom $\%$ ¹⁵N, in water. *I* Lamm et al.⁹ report a value of 10.3 Hz for the two-bond coupling constant in free dimethylbenzimidazole. ^ASample was 10 mM [B1,B3¹⁵N₂](CN)Cbl, 50 atom % ¹⁵N, in
0.52 M H₂SO₄ (ca. 50% base-off).⁶ (Sample was 10 mM [B1,B3¹⁵N₂](CN)Cbl, 50 atom % ¹⁵N, in ribofuranosyl-5.6-dimethylbenzimidazole⁷ in water, pH 2.45 (adjusted with HCl). The pK_a of *o*-ribazole is 5.56 at 25 °C.⁷ *Sample was 0.242 M 1-a-D-ribofuranosyl-5.6-dimethylbenzimidazole 3'-phosphate in 10% D,O. pH 8.63 (adjusted with KOH). The second macroscopic pK_a of the zwitterion (pH₁ = 2.94) is 6.27.

This effect compares favorably to the previously determined value of 44% of the effect of protonation from comparisons of the ${}^{13}C$ NMR spectra of the coordinated and free nucleotide.⁸ Importantly, the chemical shifts of both nitrogens of the nucleotide of the protonated, base-off species are virtually identical with those of the detached, protonated nucleoside, confirming our previous conclusion (from ${}^{13}C$ NMR) of a lack of interaction between the pendent nucleotide and the remainder of the structure in the protonated, base-off species.² In contrast, the ¹⁵N resonances of both B1 and B3 of the base-off but benzimidazole-deprotonated (CN)₂Cbl are shifted *downfield* relative to those of the detached, free-base nucleotide, the B3 resonance, by 5 ppm.

While it is clear that de novo formation of a hydrogen bond to a nitrogen heterocycle acceptor (like protonation of such an acceptor) should cause an upfield shift of its ¹⁵N resonance,^{17,18} the downfield shift of the B3 resonance of base-off dicyanocobalamin is in accord with a change of hydrogen-bond donor from water (i.e., in the free nucleotide) to an amide N-H. Thus, the ¹⁵N resonance of pyridine¹⁵ and that of N3 of N-methylimidazole¹¹ show regular downfield shifts upon transfer through a series of solvents of decreasing hydrogen bond donor strength (i.e., decreasing values of α , the solvent hydrogen bond donor acidity¹⁹). In fact, application of the Taft linear solvation energy relationship²⁰ (or the similar treatment of Kolling²¹) to the ¹⁵N chemical shift of pyridine^{12,22} predicts a 5-10 ppm downfield shift of the ¹⁵N resonance on transfer from water ($\alpha = 1.13^{20}$) to formamide (α)

- (13) These values ignore the effect of the magnetic anisotropy of the metal (13) These values ignore the effect of the magnetic anisotropy of the metal
atom on the ¹⁵N chemical shifts. If we correct for this effect by using
McConnell's equation,¹⁴ the known geometry of (CN)Cbl in the solid
st
-
- M. J.; Pilling, D. Proc. R. Acad. Soc. London, Ser. A 1964, 278, 1-26.
- (16) Hodgkin, D. C.; Lindsey, J.; Sparks, R. A.; Trueblood, K. N.; White,
J. G. Proc. R. Soc. London, Ser. A 1962, 269, 494–517.
(17) Alei, M.; Wageman, W. E. Tetrahedron Lett. 1979, 667–670.
- (18) Witanowski, M.; Stefaniak, L.; Webb, G. A. Annu. Rep. NMR Spec-
- (19) Taft, R. W.; Kamlet, M. J. J. Am. Chem. Soc. 1976, 98, 2886–2894.
(20) Taft, R. W.; Kamlet, M. J. J. Am. Chem. Soc. 1976, 98, 2886–2894.
(20) Kamlet, M. J.; Abboud, J. L. M.; Taft, R. W. Prog. Phys. Org. Chem.
- 1981, 13, 485-630.
-
- (21) Kolling, O. W. Anal. Chem. 1979, 15, 1324–1325.
(22) Taft, R. W.; Kamlet, J. M. Org. Magn. Reson. 1980, 14, 485–493.

Figure 2. (A) ¹⁵N NMR spectrum of the amide region of $(CN)_2Cbl$, 33 mM in 0.1 M NaCN in DMSO- d_6 . A total of 44034 transients were accumulated, by using the DEPT sequence with a $\pi/4$ proton read pulse, into a 32K data set over a 6000 Hz sweep width on a Bruker MSL 300 NMR spectrometer (30.415 MHz). The recycle time was 2.72 s. Chemical shifts are downfield relative to external $NH₃(I)$. (B) ¹⁵N NMR spectrum of the amide region of (CN) ₂Cbi, 43 mM in 0.2 M NaCN in $\text{DMSO-}d_6$. A total of 31 124 transients were collected as described in

 $= 0.66^{20}$). Furthermore, transfer of N-methylimidazole from water to methylene chloride, in which it exists primarily as an intermolecularly hydrogen-bonded dimer, also causes a 5 ppm downfield shift of the N3¹⁵N resonance.¹⁷ Thus, the downfield shift of the B3 resonance of base-off (CN)₂Cbl relative to the free-base nucleotide is in accord with the existence of (CN), Cbl largely as the hydrogen-bonded tuck-in species.^{2,3}

 (A) .

We have also investigated the amide side chain ¹⁵N chemical shifts of $(CN)Cbl$, $(CN)_{2}Cbl$, and $(CN)_{2}Cbl$ (Figure 2) via the distortionless enhancement by polarization transfer sequence²³ in DMSO- d_6 . In addition, $(CN)_2Cbi$, $(CN)_2Cbl$, and the b-, d-, and
e-monocarboxylic acid derivatives²⁴ of the latter were observed
by ¹H-detected, ¹H, ¹⁵N heteronuclear multiple-quantum co-
herence spectroscopy,^{25.} servation of the heteronuclei but selective observation of the attached protons and correlation of the ¹H and ¹⁵N resonances. The data are collected in Table II, along with the proton chemical shift temperature gradients for the amide protons of $(CN)_2C$ bi and (CN)₂Cbl. Partial assignment of the ¹⁵N resonances can be
made²⁷ by observation of the missing ¹⁵N and ¹H resonances in the HMQC maps of the b-, d-, and e-monocarboxylic acid derivatives of (CN) , Cbl, since the three principle monocarboxylic acid derivatives obtained by limited acid-induced hydrolysis of CNCbl^{28,29} have been thoroughly characterized by ¹³C NMR

- (23) Pegg, D. T.; Doddrell, D. M., Bencell, M. R. J. Chem. Phys. 1982, 77, 2745-2752.
- (24) Marques, H. M.; Scooby, D. C.; Victor, M.; Brown, K. L. Inorg. Chim. *Acta* 1989, 162, 151–155.
- (25)
- (26)
- Acta 1989, 102, 151–155.
Muller, L. J. Am. Chem. Soc. 1979, 101, 4481–4484.
Bax, A.; Subramanian, S. J. Magn. Reson. 1986, 67, 565–569.
DiFeo, T. J.; Schiksnis, R. A.; Kohli, R. K.; Opella, S. J.; Nath, A.
Magn. Reson. Che (27)

Table II. ¹⁵N and ¹H NMR Data for the Side-Chain Amides of Cyanoeobamides^e

(CN) Cbl		(CN) ₂ Cbi ^b		(CN) ₂ Cbl^b		$(CN)_2Cbl-d-COO^{-b}$		$(CN)_{2}Cbl-b-COO^{-b}$		$(CN)_2Cbl-e-COO^{-b}$	
δ iss, ^e ppm amide ^a			δ ¹³ N ^e ppm $-\delta$ ¹ H ^e ppm	δ 15 μ . ϵ ppm	δ ւ _H . ^{e√} ppm	δv_N ^e ppm δu_N ^e ppm		δ iss." ppm δ i _H ." ppm		δ osk." ppm	$\delta_{\rm H}$, ppm
106.70	$\mathbf d$	107.85	6.69	107.83	6.70			107.84	6.71	107.73	6.71
			(-5.46) 7.13 (-5.13)		(-5.12) 7.11 (-4.86)				7.17		7.46
107.39	b	107.95	6.84 (-5.36)	107.89	6.85 (-5.08)	107.96	6.83			108.10	6.86
			7.47 (-3.79)		7.46 (-3.75)		7.46				7.26
109.77	\mathbf{C}	108.35	6.72 (-5.47)	108.57	6.92 (-6.16)	108.63	6.86	108.53	6.91		
			7.07 (-4.50)		7.14 (-3.39)		7.42		7.15		
110.24		110.60	7.10 (-5.44)	111.23	7.32 (-4.10)	111.21	7.31	111.23	7.31	110.62	7.28
			7.89 (-2.60)		7.87 (-4.14)		7.81		7.90		7.79
112.80	\mathbf{f}	113.47 ⁸	7.97 (-5.88)	112.658	8.31 (-4.14)	112.57	8.31	112.75	8.32	113.20	8.34
113.85		113.63	6.99 (-5.47)	113.57	7.00 (-5.32)	113.62	6.98	113.50	6.98	113.45	7.00
			7.60 (-4.81)		7.60 (-4.59)		7.59		7.62		7.58
115.78		115.84	7.07 (-4.50)	115.88	7.08 (-4.77)	115.70	7.06	115.70	7.06	115.62	7.08
			7.91 (-3.65)		7.85 (-4.99)		7.78		7.77		7.76

^a In DMSO- d_6 . ¹⁵N chemical shifts were referenced to external CH₃NO₂ but are reported relative to NH₃(I) (δ_{CH_3NO} = 380.23⁵). ¹H chemical shifts were determined relative to external TSP. ^bSamples ca. 50 mM in 0.1 M NaCN. ^cBy DEPT at 30.415 MHz on a Bruker MSL 300 NMR spectrometer at 25 °C. ^dReference 27. ^eBy ¹H-detected ¹H, ¹⁵N HMQC at 32 °C on spectra with a $3\pi/4$ read pulse.

spectroscopy.^{30,31} In addition, the f side chain ¹⁵N resonance is readily identified by its inversion in DEPT spectra utilizing a $3\pi/4$ read-out pulse, as well as its correlation to only a single ¹H resonance in the HMQC maps.

Comparison of the amide ¹⁵N resonances of (CN)Cbl and (CN), Cbi shows that removal of the benzimidazole nucleotide has a much larger effect on the chemical shifts of the downward-projecting b, d, e, and f side chain amides $(\Delta \delta = \delta_{(CN)_{2}Cbi} - \delta_{(CN)Cbi} = 0.56, 1.15, -1.42,$ and 0.67, respectively) than on the upward-projecting a, c, and g side chain amides ($\Delta \delta = 0.36, -0.22$, and 0.06), as would be expected. This suggests that the b, d, e, and f amides are significantly affected by the magnetic anisotropy of the heterocyclic nucleotide in base-on (CN)Cbl and that the b, d, and f amide nitrogens are in the shielding region of the benzimidazole field, while the e amide nitrogen is in the deshielding region. Careful inspection of the X-ray crystal structures of base-on cobalamins^{32,33} suggests that this may indeed by the case.

Comparison of the ^{15}N and ¹H amide resonances of $(CN)_{2}C$ bi and (CN)₂Cbl shows that three of the amides undergo significant chemical shift changes. The f (nucleotide loop) amide nitrogen undergoes an 0.8 ppm upfield shift in (CN) , Cbl relative to $(CN)_2$ Cbi, while its proton undergoes an 0.34 ppm downfield shift and a 30% reduction of its thermal gradient. The e amide nitrogen undergoes a very small (0.2 ppm) downfield shift, while its upfield (presumable anti^{34,35}) proton also undergoes an 0.2 ppm downfield

- Biochem. 2. 1966, 344, 289–309.

Biochem. 2. 1966, 344, 289–309.

(30) Anton, D. L.; Hogenkamp, H. P. C.; Walker, T. E.; Matwiyoff, N. A.
 J. Am. Chem. Soc. 1980, 102, 2215–2219.

(31) Pagano, T. G.; Marzilli, L. G. Bioc
-
-
- (32) Rossi, M.: Glusker, J. P.: Randaccio, L.: Summers, M. F.: Toscano, P.

J.: Marzilli, L. G. J. Am. Chem. Soc. 1985, 107, 1729–1738.
- (33) Glusker, J. P. In B₁₂; Dolphin, D., Ed.; Wiley: New York, 1982; Chapter 3
- (34) Cohen-Addad, C.; Cohen-Addad, J. P. Spectrochim. Acta 1977, 33A, $821 - 832.$

shift. Strangely, its downfield (presumably syn^{34,35}) proton undergoes a 25% reduction in thermal gradient. Finally, the $15N$ resonance of the acetamide side chain amide resonating near 111 ppm is shifted downfield 0.6 ppm and its upfield proton is shifted 0.22 ppm downfield and experiences a 25% decrease in its thermal gradient.³⁶ In the dicyano derivative of the d monocarboxylic acid $((CN)_2Cbl-d-COO^-)$ the downfield proton of the e amide undergoes a 0.3 ppm downfield shift (relative to (CN) , Cbl), while a similar effect is seen for the downfield proton of the d amide in $(CN)_2$ Cbl-e-COO⁻. Considering the proximity of the d and e side chains, such effects are not unreasonable. Interestingly, in (CN) , Cbl-e-COO⁻ the acetamide nitrogen resonating near 111 ppm is shifted upfield (as in $(CN)_2C$ bi) and the f amide ¹⁵N resonance is shifted downfield, nearly to its position in (CN) ₂Cbi. Strangely, the amide protons of these groups are unaffected.

The effects of changes in hydrogen bonding on amide ¹⁵N chemical shifts are complicated, as evidenced by solvent effects
on the ¹⁵N resonances of peptides.³⁷⁻⁴¹ For instance, when actinomycin D is shifted through a series of solvents of decreasing hydrogen bond acceptor strength (i.e., decreasing values of β , the solvent hydrogen bond acceptor basicity⁴²) but increasing donor strength (i.e., increasing α), all of its ¹⁵N resonances shift downfield.³⁹ However, such downfield shifting may be due entirely

- (35) Saito, H.; Tanaka, Y.; Nakada, K. J. Am. Chem. Soc. 1971, 93, 1077-1081
- (36) The downfield proton of the amide whose ¹⁵N resonance is near 116 ppm indergoes a 35% increase in its thermal gradient in (CN)₂Cbl relative
to (CN)₂Cbi, but there is no significant change in ¹⁵N or ¹H chemical
- shifts. The significance of this observation is unclear.
(37) Hawkes, G. E.; Randall, E. W.; Hull, W. E.; Convert, O. Biopolymers
1980, 19, 1815–1826.
-
- 1980, 1981, Chan, S. I. J. Am. Chem. Soc. 1982, 104, 6953–6961.

(39) Shafer, R. H.: Fornica, J. V.: Delfini, C.: Brown, S. C.: Mirau, P. A.

Biochemistry 1982, 21, 6496–6503.

(40) Llinas, M.: Horsley, W. J.; Klein, M. P.
- 7554-7558 Williamson, K. L.; Pease, L. G.; Roberts, J. D. J. Am. Chem. Soc. 1979, (41)
- $101, 714 716.$ (42) Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 377-383.

⁽²⁸⁾ Armitage, T. B.; Cannon, J. R.; Johnson, A. W.; Parker, L. F. J.; Smith, E. L.: Stafford, W. H.; Todd, A. R. J. Chem. Soc. 1953, 3849–3864.
(29) Bernhauer, K.; Wagner, F.; Beisbarth, H.; Rietz, P.; Vogelmann, H.

to effects of hydrogen-bond donation to the amide carbonyl. $38-41$ since the tertiary amides of actinomycin D also undergo such a shift.³⁹ In alumichrome, shifting the solvent from DMSO (an excellent acceptor but not a donor) to trifluoroethanol (an excellent donor) causes a downfield shift of the ¹⁵N resonances of four anides whose N-H's are solvent protected but whose carbonyls are exposed, while a single amide whose amide proton is external but whose carbonyl is buried undergoes an upfield shift.⁴⁰ Thus, in thc current case. where the amide hydrogen bond donor of the tuck-in species sees a decrease in acceptor strength as the acceptor is changed from DMSO (in $(CN)_2$ Cbi) to benzimidazole N3⁴³ $(in (CN), Cbl)$, and there is presumably no donation to its carbonyl oxygen in either state. an upfield shift of its **I5N** resonance would be expected. Indecd. application of the Taft linear solvation energy relationship to the solvent effect on the ¹⁵N resonance of formamide⁴⁷ predicts an upfield shift of ca. 2 ppm on transfer from DMSO to pyridine. However, this calculation ignores the influence of the magnetic anisotropy of the nitrogen heterocycle. which would be expected to deshield the **I5N** resonance of the hydrogcn-bond donor in the tuck-in species due to its edgewise approach.

Hydrogen bonding effects on amide proton chemical shifts are similarly complicated. $45-47$ It is now known that formation of intramolecular hydrogen bonds in peptide amides can cause an upfield or downficld shift of the amide proton resonance (relative to the solvated species in water) depending on the H.O internuclear distance.⁴⁷ However, application of the Taft linear solvation energy relationship²⁰ to the amide ¹H chemical shifts of N -methylacetamide in 10 solvents⁴⁸ predicts a small (0.05-0.2) ppm) upficld shift of the amide proton upon transfer from DMSO to pyridine. Again. however, this treatment ignores the effect of the magnctic anisotropy of the benzimidazole moiety, which would surely deshield the amide proton significantly. The significant decrease in the amide proton chemical shift thermal gradient of the upfield protons of the e amide and the acetamide resonating near 111 ppm upon formation of the tuck-in species is consistent with the formation of an intramolecular hydrogen bond in DMSO solution to either of these amides.^{45,49}

The observations summarized in Table II and discussed above arc consistent with the possibility that either the e amide or the acetamide whose nitrogen resonates near 111 ppm is the donor in the tuck-in species,⁵⁰ while the other amide is involved in a hydrogen-bonded interaction with the f amide in either $(CN)_{2}Cbl$ or (CN) . Cbi. Alternatively, the chemical shift changes at the f amidc could be due cntircly to conformational effects upon removal of thc nuclcotidc. In this case. either the e amide or the acetamide whose $15N$ resonance is near 111 ppm is the hydrogen-bond donor and the chemical shift effects at the other amide are due to its proximity to the benzimidazole in the tuck-in species. The ¹⁵N chemical shifts of (CN),Cbl-e-COO⁻ suggests the former interpretation, since hydrolysis of the e amide appears to cause a loss of the interactions causing the nitrogen chemical shift effects at both thc f amide and the acetamide resonating near 1 I I ppm. This suggcsts that thc e amide is the donor in the tuck-in species and that a hydrogen-bonded interaction between the f amide (as acceptor) and the acetamide resonating near 111 ppm (presumably the g acctamide) in (CN) , Cbi is prevented from forming in the tuck-in species of (CN) , Cbl. However, since the proton resonances in $(CN)_2Cbl$ -e-COO⁻ do not confirm this interpretation, caution

- (43) While nitrogen heterocycles are better bases than DMSO ($pK_a \sim 0^{40}$), they are weaker hydrogen bond acceptors (e.g. $\beta = 0.76$ for DMSO but 0.64 for pyridine²⁰).
- Kamlet, M. J.: Dick/nson, C.: Taft. R. W. *J. Chem. Soc.. Perkin Trans. 2* **1981.** 353-355.
-
- Kessler, H. *Angew. Chem., Int. Ed. Engl.* 1982, 21, 512–523.
Ovchinnikov, Y. A.; Ivanov, V. T. *Tetrahedron* 1974, 30, 1871–1890.
Purdi, A.; Wagner, G.; Wuthrich, K. *Eur. J. Biochem.* 1983, 137,
- 445-454. (48) Gonzalez. G.; Chavez. I. *J. Chem. Sor.. Faraday Trans. 2* **1981.** *77,*
- 223 1-2236. Ovchinnikov. Y. **A,:** Ivnnov, **V.** T. *Terrahedron* **1975.** *31.* 2177-2209.
- (50) Inspection of models shows that hydrogen-bond formation from benzimidazole N3 to any of the three acetamides is feasible without development of significant strain in the nucleotide loop.

must be exercised in drawing any conclusions. Attempts to resolve these issues by a complete **I3C, 'H,** and I5N assignment of (CY),Cbl are currently in progrcss.

Acknowledgment. This research was supported by the National Institute of Diabctcs and Digcstivc and Kidney Diseases. Grant No. DK 40212, the National Science Foundation, Grant No. Rll-8902064. thc State of Mississippi, and Mississippi State University. Purchase of the Bruker MSL *300* NMR spectrometer through a grant from the Defense Advanced Research Projects Agency monitored by the Office of Naval Research is gratefully acknowledged. We are extremely grateful to Prof. William Alworth. Tulane University, for the generous gift of '5N-enriched cyanocobalamin.

(51) To whom correspondence should be addressed.

P.O. Box 870336 Tuscaloosn. Alabama 35487

Receicrd July **20,** *1990*

First Examples of Six-Coordinate Homoleptic Complexes with Monodentate Arenethiolate Ligands. Synthesis and Structural Characterization of $[Ph_4P]_2[Nb(SPh)_6]$, **Na(THF)3Nb(SPh-pMe)6,** [**(15-crown-5)Na][Ta(SPh),],** and $Nb₂(\mu_2$ -SPh)₄(SPh)₂Cl₂(C₂H₅CN)₂

Recent synthetic and crystallographic studies of early-transition-metal complexes with aliphatic or aromatic thiolate ligands indicate that the chemistry of these M/S compounds ($M = Zr_i$) Nb,² Ta^{2a,3}) may be as extensive as that of the Mo/S and W/S systems. Coordination of aliphatic thiolate ligands to earlytransition-metal ions often is followed by C-S bond cleavage that generates the S^{2-} ligand.^{2b-d} The latter is incorporated in monomeric or oligomeric complexes in either terminal or bridging coordination modes. The C-S bond cleavage appears to be a heterolytic intramolecular process, facilitated by β -proton elim $ination.^4$ Not unexpectedly, this reaction does not readily occur with benzenethiolate ligands although an example of C-S bond cleavage of benzenethiolate is known.^{2c} Among the known thiolate complexes of "mixed"-ligand complexes that contain thiolate ligands, and S²-ligands generated by C-S bond cleavage reactions,

- (3) (a) Tatsumi, K.; Matsubara, I.; Sekiguchi, Y.; Nakamura, A.; Mealli, C. *Inorg. Chem.* 1989, 28, 773–780. (b) Schrock, R. R.; Wesolek, M.; Liu, A. H.; Wallace, K. C.; Dewan, J. C. *Inorg. Chem.* 1988, 27, 2050-2054.
- **(4)** (a) Boorman, P. M.: O'Deli, B. D. *J. Chem* Soc., *Dalton Trans.* **1967,** 932. **(b)** Boorman. P. M.; Chiveri, T.: Mahadev, K. N. *Inorg. Chim. Aria* **1976.** *19.* L35.

⁽¹⁾ (a) Coucouvanis, D.: Lester, R. K.; Kanatzidis, M. *G.;* Kessissoglou. D. **P.** *J. Am. Chem. Soc.* **1985,** *107,* 8279. (b) Coucouvanis. D.; Hadjikyriacou, **A.** 1.: Kanatzidis, **M.** G. *J. Chem.* **SOC.,** *Chem. Commun.* **1985,** 1224.

^{(2) (}a) Tatsumi, K.; Matsubara, I.; Inoue, Y.; Nakamura, A.; Miki, K.; Kasai, N. J. Am. Chem. Soc. 1989, 111, 7766–7777. (b) Tatsumi, K.; Sekiguchi, Y.; Nakamura, A.; Cramer, R. E.; Rupp, J. J. J. Am. Chem. Soc. 1986, 108 G. J. Chem. Soc., Chem. Commun. 1987, 1258. (d) Seela, J. L.;
Huffman, J. C.; Christou, G. Polyhedron 1989, 1797. (e) Tatsumi, K.;
Sekiguchi, Y.; Nakamura, A.; Cramer, R. E.; Rupp, J. J. Angew.
Chem., Int. Ed. Engl. 1986,